Welding residual stresses and distortion
Calculation and measurement

Revised edition
Contents

Preface to the English edition .. VII
Preface to the German edition ... VIII
List of symbols ... IX

1 Introduction .. 1
 1.1 Contents of the book ... 1
 1.2 Description of phenomena .. 5
 1.3 Structuring of the contents and general literature references 14

2 Modelling of welding temperature fields ... 16
 2.1 Significance, contents and application of the heat conduction model 16
 2.2 Distributed heat sources ... 23
 2.3 Governing equations of heat conduction 30
 2.4 Temperature fields around momentary concentrated heat sources 34
 2.5 Temperature fields around continuous concentrated heat sources 37
 2.6 Temperature fields around momentary and continuous distributed heat sources 46
 2.7 Temperature fields around rapidly travelling high-power sources 51
 2.8 Temperature fields in dimensionless parameters 53
 2.9 Application of the linear heat conduction model to more complex problems 62
 2.10 Peak temperature, cooling rate, cooling time and dwell time 67
 2.11 Heat conduction analysis based on numerical methods 84

3 Modelling of welding residual stresses and distortion 100
 3.1 Fundamentals of the model .. 100
 3.2 Elastic-plastic material behaviour and finite element method 107
 3.3 Rod element model ... 121
 3.4 Ring element model .. 132
 3.5 Thin plate element model with plane stress 157
 3.6 Cross-sectional plate or solid element model with plane strain 165
 3.7 Shell or plate element model .. 182
 3.8 Solid element model ... 185
 3.9 Elastic thermal stress model .. 201
 3.10 Elastic shrinkage force model ... 208
 3.11 Elastic residual stress source model 231
 3.12 Shrinkage and distortion models 250
 3.13 Buckling distortion models .. 264
 3.14 Model integration into strength analyses 272

4 Thermodynamic and thermomechanical material properties 287
 4.1 Overview ... 287
 4.2 Thermodynamic material properties 287
 4.3 Thermomechanical material properties 294
 4.4 Combined diagrams with material properties 302
 4.5 Material properties related to microstructural transformation 307
 4.6 Stress relaxation by annealing ... 320
5 Measuring methods for temperature, residual stresses and distortion

5.1 Outline and significance

5.2 Temperature measuring methods

5.3 Residual stress measuring methods

5.4 Distortion measuring methods

5.5 Similarity relations for test models of welds

Bibliography

Index