Klaus Matthies a.o.

Thickness Measurement

with Ultrasound

Table of contents

1	Scope	13
2	Terms	14
3	Basic Principles	15
3.1	Basic Terms	
3.1.1	Oscillation	15
3.1.1.1	Deflection	16
3.1.1.2	Amplitude	
3.1.1.3	Phase	
3.1.1.4	Oscillation Time	
3.1.1.5	Frequency	
3.1.1.6	Oscillation with or without Damping	17
3.1.2	Waves	
3.1.2.1	Propagation Velocities	
3.1.2.2	Wave Length	
3.1.2.3	Wave Front	
3.1.2.4	Interference	
3.2	Sound Waves	
3.2.1	Wave Modes	
3.2.2	Sound Velocity	
3.3	Sound Pressure	
3.3.1	Characteristic Impedance	
3.3.2	Interfaces	
3.3.3	Sound Reflection and Sound Transmission	
3.4	Continuous Wave	
3.5	Pulsed Sound Waves	
3.6	Reflection and Refraction	
3.7	Sound Fields	
3.7.1	Near Field	
3.7.2	Far Field	
3.7.3	Directivity Pattern	
3.7.4	Focusing	
3.8	Sound Attenuation	30
3.8.1	Absorption	
3.8.2	Scattering	
3.8.3	Sound Attenuation Coefficient	
3.8.4	Radiation Laws	
3.8.5	Units of Amplitude	34

4	Measurement Techniques	36
4.1	Equipment Function	36
4.1.1	Equipment with A-scan Display	37
4.1.1.1	Analogue Equipment	37
4.1.1.2	Digital Equipment	41
4.1.2	Digital Indication of Thickness Measuring Gages	42
4.2	Probes	45
4.2.1	General	
4.2.2	Piezoelectric Effect	45
4.2.3	Single Transducer Straight or Normal Beam Probe	47
4.2.4	Single Transducer Straight Beam Probe with Delay Path	48
4.2.5	Dual or Twin Probes (TR-probes)	49
4.2.6	Probes for High Temperature Applications	51
4.2.7	Electrodynamic Probes	54
4.2.7.1	General	54
4.2.7.2	Principle of Electrodynamic Ultrasonic Generation	54
4.2.7.3	Construction of Electrodynamic Transducers (probes)	56
4.3	Auxiliary Equipment	58
4.3.1	Calibration Blocks	58
4.3.2	Coupling Medium	59
4.4	Hints for Determination of the Efficiency of Test Systems	59
4.4.1	General	59
4.4.2	Control of Time Base Linearity	60
4.4.3	Control of Indications with Curved Surfaces	60
4.4.4	Control of Indications from Small Flat-bottom Holes	62
4.4.5	Control of Thickness Measurement in the Case of	
	Corroded Backwall Surface	62
_		
5	Ultrasonic Thickness Measurement Methods	
5.1	Introductory Remarks	
5.2	Evaluating Methods with Ultrasonic A-scan Equipment	64
5.2.1	Definition of Application as Compared to Instruments	
	with Digital Indication	
5.2.2	General	
5.2.3	Measuring Methods	
5.2.3.1	Simple Length Measurement	
5.2.3.2	Measurement with Zero Displacement	
5.2.3.3	Multiple Echo Method	
5.2.4	Measuring Methods with Delay Path Probes	
5.2.4.1	Single Transducer Probe with Delay Path	
5.2.4.2	Measurement with Twin Probe	72

5.3	Evaluation Techniques of Commercially Available Digital	
	Instruments	74
5.3.1	Survey	75
5.3.2	Instruments with Single Transducer Probes	78
5.3.2.1	Evaluation Methods	78
5.3.2.1.1	Straight Beam Probe without Delay Path	78
5.3.2.1.2	Straight Beam Probe with Delay Path	79
5.3.2.2	Methods of Time Gate Generation	82
5.3.3	Instruments with Twin Probes	85
5.3.3.1	Evaluation Techniques	85
5.3.3.2	Time Gate Generation	88
5.4	Frequency Measuring Methods	89
5.4.1	Resonance Method	89
5.5	Other Nondestructive Measuring Methods	91
5.5.1	Eddy Current Method	91
5.5.2	Magnetic Methods	93
5.5.3	Method Using Ionizing Radiation	95
5.5.3.1	Radiographic Examination	95
5.5.3.2	Back Scatter Method	
5.5.4	Thickness Determination via Distance Measurement	101
5.5.4.1	Distance Measurement with Laser Optical Method	
	(light point triangulation)	
5.5.4.2	Distance Measurement Using Ultrasound (airborne sound).	103
5.5.5	Microwave Method	104
5.5.6	Shearography	
5.5.6.1	Principal	
5.5.6.2	Sherographic Pipe Examination	
5.5.6.3	Measuring Sensitivity	109
6	Influencing Variables and Limitations with	
	Ultrasonic Thickness Measurement	111
6.1	Equipment Influences	111
6.1.1	Equipment with A-scan	111
6.1.1.1	Influence of Equipment on the Measuring Uncertainty	111
6.1.1.2	Time Base Range	111
6.1.1.3	Reading Accuracy	112
6.1.1.4	Linear Deviation of the Horizontal Deflection	112
6.1.1.5	Echo Height Adjustment	112
6.1.2	Thickness Gages with Digital Indication	114
6.1.2.1	Influence of the Gages on the Measuring Uncertainty	

6.1.2.2	Time Base Range
6.1.2.3	Reading Uncertainty116
6.1.2.4	Deviation of Linearity 116
6.2	Influences of the Probe 117
6.2.1	Frequency 117
6.2.2	Diameter 119
6.2.3	Constructional Features
6.2.3.1	Single Transducer Straight Beam Probe without Delay Path119
6.2.3.2	Single Transducer Straight Beam Probe with Delay Path
6.2.3.3	Twin Probes 120
6.2.3.4	Special Probes
6.3	Influencing Factors on the Instrument-Probe-System
6.3.1	Temperature Influences 120
6.3.2	Influence of Ageing 121
6.3.3	Influence of Fluctuation of Supply Voltage
6.3.4	Influence of the Probe Cable
6.3.5	Electromagnetic Compatibility (EMC)122
6.4	Influence of the Couplant
6.4.1	General
6.4.2	Couplant for Room Temperature123
6.4.3	Couplant for Higher Temperatures 123
6.5	Influences of the Test Object 126
6.5.1	Geometry Influences
6.5.2	Surface Conditions
6.5.2.1	Manufacturing Surface Conditions
6.5.2.2	Corrosion
6.5.2.3	Coatings
6.5.3	Influence of the Material
6.5.3.1	Sound Attenuation
6.5.3.2	Sound Velocity
6.6	Cast Iron Materials
6.6.1	Introduction
6.6.2	Basic Material Science
6.6.2.1	General
6.6.2.2	Cast Steel
6.6.2.3	Cast Iron
6.6.3	Thickness Measurement Using Ultrasonics on
	Cast Iron Materials
6.6.3.1	Measurement of Cast Steels
6.6.3.2	Measurement of Cast Iron147
6.6.4	Applications
6.7	Temperature Influences

6.8	On the Precision of Ultrasonic Thickness Measurement	156
6.8.1	Determination of the Measuring Uncertainty	156
6.8.2	Influences on the Measuring Uncertainty	161
6.9	Personal Qualification	162
7	Performance of Thickness Measurements	
7.1	Selection of Measuring System	163
7.1.1	Manufacturing Control/Quality Control	163
7.1.2	In-service Inspection/Residual Wall Thickness Measurement	167
7.1.3	Additional Selection Criteria	
7.2	Selection of Measuring Location	171
7.3	Preparation of Measuring Location	174
7.4	Calibration of the Measuring System	174
7.4.1	General	175
7.4.1.1	Sensitivity Adjustment	175
7.4.1.2	Adjustment of Time Base Range	175
7.4.2	Ultrasonic Equipment with A-scan Display	176
7.4.2.1	Adjustment of Single Transducer Probes	176
7.4.2.2	Adjustment of Single Transducer Probes with Delay Path	179
7.4.2.3	Adjustment of Twin Probes	179
7.4.3	Digital Indicating Wall Thickness Gages	180
7.5	Measuring Process	
7.6	Special Measuring Problems/Special Measuring Techniques	183
7.6.1	Measurements on Coated Surfaces	183
7.6.2	Thickness Measurements on Plastic Componenents	
	Produced from Fibre Glass Laminate (reinforced)	188
7.6.2.1	General	
7.6.2.2	Practical Fibre Glass Applications	188
7.6.2.3	Problems Associated with Ultrasonic Examination	189
7.6.2.4	Probe and Ultrasonic Equipment	190
7.6.2.4.1	Probe Selection	190
7.6.2.4.2	Equipment Selection	193
7.6.2.5	Options and Limitations	193
7.6.2.6	Examples	194
7.6.3	Measurements in the Production Area	197
7.6.4	High Frequency Precision Thickness Measurement	199
7.6.5	Thickness Measurement at High Temperatures	202
7.6.5.1	General	202
7.6.5.2	Selection of Measuring Equipment	
7.6.5.2.1	Selection of Measuring Gage	203
7.6.5.2.2	Probe Selection	204
7.6.5.2.3	Couplant Selection	207

7.6.5.2.4	Cables, Connections, Accessories	. 207
7.6.5.3	Adjustment	. 208
7.6.5.4	Measurement	. 208
7.6.6	Residual Wall Thickness Measurements of a	
	Galvanizing Pan under Operational Conditions	. 210
7.6.6.1	General	. 210
7.6.6.2	Test Techniques	. 211
7.6.6.2.1	Ultrasonic Probes	. 211
7.6.6.2.2	Evaluation and Documentation System	. 213
7.6.7	Immersion Test Technique	. 215
7.6.8	Measurements under Water (Offshore)	. 217
7.6.9	Thickness Measurement Using	
	Electrodynamic Ultrasonic Generation	. 218
7.6.10	Corrosion Detection with Guided Waves	. 222
7.6.10.1	General	. 222
7.6.10.2	Principle of Measurement	. 223
7.6.10.3	Probe, Generation and Reception of SH-Waves	. 224
7.6.10.4	Results and Examination Concept	. 225
7.6.11	Measurement in Potentially Explosive Areas	. 228
8	Documentation and Classification of Measuring Results	. 229
8.1	Fundamental Principles	
8.2	Recording Results	
8.3	Evaluation and Documentation of Results	
9	Automated Thickness Measurement	. 238
9.1	Introduction	
9.2	Production Testing	
9.2.1	Component Tolerances	
9.2.1.1	General	
9.2.1.2	Automated Production Examination Illustrated e.g. with	
	Thickness Measurement of Steel Pipes	. 239
9.2.2	Production Control	
9.3	In-service Inspection	
9.3.1	Corrosion Determination	
9.3.2	Evaluation and Logging of Measured Values	
9.3.3	Example: Long Distant Pipe Lines	
	Appendix	253
	Literature List	268
	Index	275