Inhaltsverzeichnis

1	Aufbau- und Verbindungstechnik	
1.1	Wie gut lassen sich DFN in der Welle löten? T. Ahrens, D. Dudek, Trainalytics GmbH, Lippstadt	11
1.2	PCB Embedding von SiC MOSFET für automotive Leistungselektronikmodule	
1.3	Verarbeitbarkeit und Zuverlässigkeit von Direct-Immersion-Gold (DIG) für Au- und AlSi1-Dünndrahtbondverfahren F. Fischer, R. Schmidt, Fraunhofer IZM, Berlin; S. Schmitz, Bond-IQ GmbH, Berlin	22
1.4	Laserreinigen – Anforderungen & DoE N. Kneuttinger, Zollner Elektronik AG, Zandt	27
1.5	3D-Integration für elektro-optische Systeme auf Modulebene	33
1.6	Flexible Aufbau- und Verbindungstechnik für die mobile in-vivo Blutspektrometrie	39
1.7	Lötverbindungen auf polymeren Dickschichtpasten: Verarbeitung und Eigenschaften	43
1.8	Aktuelle Untersuchungsergebnisse zur Entstehung und Vermeidung der Wicking-Defekte beim Löten von SMT-Steckverbindern H. Bell, P. Wild, Rehm Thermal Systems GmbH, Blaubeuren; S. Kaminski, ERNI Electronics GmbH & Co. KG, Adelberg	49
1.9	Einflüsse von Verwindungen und Verwölbungen während des Lötprozesses auf die Qualität und Zuverlässigkeit von Lötstellen H. Wohlrabe, K. Meier, O. Albrecht, Technische Universität Dresden	55
2	Funktions- und Schaltungsträger	
2.1	Roadmap der europäischen Leiterplatten-Technologie und die wichtigsten Zukunftstrends R. Fiehler, KSG GmbH, Gornsdorf	62
2.2	Inkjet Lötstopplacke – Chancen und Herausforderungen M. Kollasa, Lackwerke Peters GmbH & Co, KG, Kempen	64

2.3	Elektronik einer neuen Dimension – Potenziale dehnbarer Foliensysteme bei der Entwicklung interaktiver Mikroimplantate N. Philippin ^{1,2} , A. Schreivogel ¹ , I. Kühne ³ , J. Kostelnik ¹ ¹ Würth Elektronik GmbH & Co. KG, Research & Innovation Center, Künzelsau; ² Hochschule München; ³ Reinhold-Würth-Hochschule, Künzelsau, Hochschule Heilbronn	68
2.4	Optimierung integrierbarer Heizschichten für energieeffiziente Fertigung elektronischer Baugruppen	74
	N. Prihodovsky, H. Daoud, U. Glatzel, Neue Materialien GmbH, Universität Bayreuth	
2.5	Untersuchung der Kompatibilität eines folienbasierten Chip-Packaging-Systems mit Lithium-Ionen-Batterie-Elektrolyt	80
2.6	Leiterplattenoberflächen – Retrospektive mit Ausblick	86
2.7	Anwendungen mit integrierten Schichten für endogene Heizprozesse auf Leiterplatten D. Seehase ¹ , A. Neiser ² , F. Lange ¹ , A. Novikov ¹ , M. Nowottnick ¹ ¹ Universität Rostock; ² SEHO Systems GmbH, Kreuzwertheim	91
2.8	Keramische Mehrlagen-Substrat-Technologie J. Weber, P. Tauber, I. Müller, A. Bär, C. Galka, Robert Bosch GmbH, Reutlingen	97
3	Modul- und Baugruppenfertigung	
3.1	Cobots – Aus dem virtuellen Paralleluniversum ins reale industrielle Umfeld – Von der Idee bis zur Umsetzung einer industriellen Applika-tion mit den Herausforderungen aus Sicht eines EMS Dienstleisters F. Bauer, Zollner Elektronik AG, Zandt	103
	F. Bauer, Zoliner Elektronik AG, Zandt	
3.2	Einfluss der Datenaufbereitung auf die Erkennung fehlerhafter Maschineneinstellungen im Drahtbonden durch maschinelles Lernen F. Klingert, M. Schellenberger, Fraunhofer IISB, Erlangen; J. Papadoudis, M. Brueggemann, K. Pressel, Infineon Technologies AG, Regensburg	108
3.3	Untersuchung der Einflussfaktoren zur Industrialisierung der Prozesse beim mediendichten Umspritzen von mechatronischen Komponenten	114
3.4	Modularer Technologiebaukasten für hochkompakte Elektroniksysteme auf Leiterplattenbasis	119
	A. Münch, Vitesco Technologies Germany, Nürnberg	
3.5		

3.6	Sichere Verarbeitung von Bottom Termination Components am Beispiel von 01005- Dioden – Vom empfohlenen Pad-Design zum zuverlässig gelöteten Bauteil	131
3.7	Ein Ansatz zu Qualitätsvorhersage mittels intelligenter SMT-Lötstelleninspektion durch den Einsatz von Maschinellem Lernen K. Schmidt, J. Bönig, G. Beitinger, N. Thielen, J. Franke, Friedrich-Alexander-Universität Erlangen-Nürnberg	135
3.8	Evaluation verschiedener Ansätze zur vollautomatisierten Montage von Weicheisenkernen auf Flachbaugruppen in traditionellen SMD-Linien	141
4	Prozess-Sicherheit und Produktprüfung	
4.1	Zukunft der Zuverlässigkeitsprüfungen in der Elektronik	147
4.2	3D-gedruckte Schirmkammern A. Engert, Zollner Elektronik AG, Zandt	152
4.3	Validierung von SW-Tools	158
4.4	Qualitätsregelung mit automatischen Inline-Inspektionssystemen A. Gladis, Viscom AG, Hannover	164
4.5	RFID-basierende Druckzyklenkontrolle für den Schablonendruck J. Katschke, ASM Assembly Systems GmbH & Co. KG, München	168
4.6	Qualitätstest der Schutzwirkung von Vergussmassen gegen Schadgas und Feuchte	171
4.7	Wellenhöhenmessung auch für turbulente Lötwellen A. Neiser, A. Reinhardt, SEHO Systems GmbH, Kreuzwertheim	176
4.8	Kontaktthermografie – eine vielversprechende Methode zur zerstörungsfreien Inspektion von Die-Löt- und -Sinterverbindungen	180
4.9	Neue Methoden zur Bewertung der Interfacefestigkeit von Dickdrahtbondverbindungen auf ENIG-Oberflächen	187
4.10	Maschinelles Lernen in der Elektronikproduktion: Herausforderungen und Anwendungsbeispiele N. Thielen, K. Schmidt, R. Seidel, J. Franke, Friedrich-Alexander-Universität Erlangen-Nürnberg	193

5	Sintern als Verbindungstechnik	
5.1	Niedertemperatur-Verbindungstechnik für MEMS-Sensorbauelemente M. Feißt, J. Wilde, Albert-Ludwigs-Universität Freiburg – IMTEK	199
5.2	Ermüdungsverhalten hoch-belasteter Ag-Sinterverbindungen Z. Gökdeniz ¹ , M. Mündlein ² , G. Khatibi ¹ , A. Steiger-Thirsfeld ¹ , J. Nicolics ¹ ¹ Technische Universität Wien, Österreich; ² ESCATEC Switzerland AG, Heerbrugg, Schweiz	204
5.3	Selektives Ag-Sintern auf Organischer Leiterplatte	210
5.4	Mechanische Eigenschaften nach thermischer Zyklierung und Silberbeschichtung von Metallkeramiksubstraten A. Schwöbel, M. Rauer, J. Scharf, R. Mittler, D. Schnee, Heraeus Deutschland GmbH & Co. KG, Hanau	
6	Systemkonzepte, Designtools, Simulation	
6.1	Simulationsgestützte Analyse von Through-hole Technology Verbindungsstellen der Elektronik im Automobilbereich R. Berger, J. Olfe, S. Rogowski, Volkswagen AG, Salzgitter; M. Röllig, S. Münch, H. Heuer, Fraunhofer IKTS, Dresden	220
6.2	Experimentelle und numerische Studie zu thermischen Kopplungen unter Berücksichtigung des Wärmespreizwinkels von Silizium-Flip-Chips auf FR4-Substrat bei natürlicher und forcierter Konvektion T. Nowak, S. Merbold, C. Egbers, R. Schacht, Brandenburgische Technische Universität Cottbus-Senftenberg	
6.3	Von der Maschine in die Cloud und wieder zurück	231
6.4	Numerische Beschreibung des richtungsabhängigen Deformationsverhaltens von Leiterplattenbasismaterialien M. Schmidt, A. Kabakchiev, R. Ratchev, M. Guyenot, Robert Bosch GmbH, Renningen; H. Walter, Fraunhofer IZM, Berlin; M. Schneider-Ramelow, Technische Universität Berlin	235
6.5	Thermische Beurteilung von THT-Lötstellendesigns für die IPC-konforme Kontaktierung durch Selektivwellenlöten	241
6.6	Digitale Transformation in der Fertigungsplanung	247
7	Zuverlässigkeit und Analytik	
7.1	Analysen der Lotermüdung an montierten Testbaugruppen unter Thermowechselbeanspruchungen R. Dudek, M. Hildebrandt, S. Rzepka, Fraunhofer ENAS, Chemnitz; R. Döring, L. Scheiter, CWM GmbH, Chemnitz; PE. Tegehall, RISE IVF AB, Mölndal, Schweden; M. Zhang, Robert Bosch GmbH, Reutlingen; R. W. Ortmann, Continental Automotive France SAS, Toulouse, Frankreich	

7.2	Zuverlässigkeit der Heterointegration von oberflächenmontierbaren Bauelementen für die flexible Elektronik D. Ernst, E. Dallmann, T. Zerna, Technische Universität Dresden	259
7.3	Einfluss eines abnormalen (CuNi) ₆ Sn ₅ /(NiCu) ₃ Sn ₄ -Schichtwachstums auf die Robustheit von bleifreien Zinn-Silber-Basis-Lotstellen bei Temperaturen oberhalb von 175 °C	264
7.4	Thermische Charakterisierung eingebetteter Bauelemente zur Strukturüberwachung J. Meyer, S. Bickel, K. Meier, K. Bock, Technische Universität Dresden; FL. Schein, D. Sirkeci, Technische Universität Berlin; E. Oertel, LFG – Eckhard Oertel e.K., Gera; H. Westphal, Tigris Elektronik GmbH, Berlin	
7.5	4-Punkt-Biegetest bei erhöhter Temperatur – Einfluss von Temperatur und Haltezeit S. Pahlke ¹ , A. Gerl ² , Y. S. Chan ¹ , I. Rau ¹ ¹ Infineon Technologies AG, Regensburg; ² Vitesco Technologies Germany GmbH, Nürnberg	280
7.6	Simulationsbasierte Optimierung eines Messstandes zur optischen Vermessung von thermo-mechanischen Verformungen R. Schwerz, M. Röllig, Fraunhofer IKTS, Dresden	286
7.7	Charakterisierung und Zuverlässigkeitsbewertung verformungsbeanspruchter mikroelektronischer Systeme für die Mobilität der Zukunft. B. Seiler ¹ , M. Eichhorst ¹ , R. Döring ² , M. Niessner ³ , ¹ Chemnitzer Werkstoffmechanik GmbH, Chemnitz; ² Fraunhofer ENAS, Chemnitz; ³ Infineon Technologies AG Regensburg	294
8	Zuverlässigkeit und Korrosion	
8.1	Analyse der Reaktionsprodukte von Metall-Formiaten im rückstandfreien Lötprozess G. Elger, O. Mokhtari, S. K. Bhogaraju, Technische Hochschule Ingolstadt; F. Conti, Universität Padova, Italien; M. Meier, H. Schweigart, Zestron Europe, Ingolstadt	301
8.2	Nachweis der ionischen Kontamination unter Low-Standoff-Bauteilen	309
8.3	Leiterplattenbasierte Sensoren zur Überwachung und Früherkennung von Korrosionsschäden H. Hartwig, M. Nowottnick, Universität Rostock	315
8.4	Wie feucht ist feucht? – Robuste Automobil-Elektronik in feuchter Umgebung L. Henneken, Robert Bosch GmbH, Schwieberdingen	321
8.5	Einfluss des pH-Wertes auf den Mechanismus der Elekrochemischen Migration	328