Hans-Joachim Peter

Handbook of Inductive Soldering

Hans-Joachim Peter Verlag

Contents

1	Introduction	11
2	Brief Review of the Beginnings of Soldering Technology	15
3	Basics of Inductive Heating	21
3.1	Introduction	21
3.2	Power Densities	21
3.3	Law of Induction	21
3.3.1	Current Penetration Depth and Temperature Distribution	23
3.3.2	Frequency Ranges	28
3.3.3	Inductor Efficiency	29
3.3.4	Power Conversion	33
4	Inductor Structure	45
4.1	Inductor Shapes	45
4.1.1	Outer and Inner Field Inductors	48
4.1.2	One-Turn and Multiturn Inductors	50
4.1.3	Pancake Inductors	51
4.1.4	Hairpin Inductors	54
4.1.5	Double Hairpin Inductors	55
4.1.6	Tunnel Inductors	55
4.1.7	Fork Inductors	56
4.1.8	Spoon Inductors	57
4.1.9	Power Line Inductors	58
4.1.10	Magnetic Field Concentrators	59
4.1.11	Multiple Inductors	64
4.1.12	Hinged Inductors	65
4.1.13	Shielding Gas Inductors	66
4.2	Inductor Pipe Dimensions	68
4.3	Inductor Positioning	69
4.4	Construction of Inductors	70
4.4.1	Inductor Structure with Handicraft Skills	70
5	Induction Heating Installations	75
5.1	Energy Sources of Modern Induction Heating Installations	76

5.1.1	Working Method - Functional Principle of a Converter	76
5.2	Installation Cooling	83
5.3	Structures of Induction Heating Installations	84
6	Basics of Soldering Technology	87
6.1	Soldering Technology Terms	87
6.2	Wetting, Propagation, Diffusion and Bonding	89
6.2.1	Wetting	89
6.2.2	Capillary Filling Pressure p_K	92
6.2.3	Diffusion Zones	98
6.3	Design Appropriate for Soldering and Heating	102
6.4	Soldering Process	109
7	Base Materials, Additives and Auxiliary Materials	113
7.1	Base Materials	113
7.2	Additives and Auxiliary Materials	113
7.2.1	Soft Solders	115
7.2.2	Brazing Alloys and High-Temperature Brazing Alloys	116
7.2.3	Auxiliary Materials	118
7.2.3.1	Fluxes	119
	Flux Application	122
	Removal of Flux Residues	123
7.2.3.2	Shielding Gases	123
7.2.3.3	Vacua	130
8	Solder Supply	133
	Soldering with Manually Supplied Solder	133
	Soldering with Inserted Solder	133
	Soldering with Preplaced Solder	135
	Soldering with Solder Coating	135
	Soldering with a Solder Wire Supply Device	135
	Soldering with Solder Paste	135
9	Strengths of Soldered Joints	137
9.1	Strengths of Soft-Soldered Joints	138
9.2	Strengths of Brazed Joints	139

10	Induction Soldering Equipment	141
10.1	Induction Soldering Installations	146
10.2	Controllers of Induction Soldering Installations	146
10.2.1	Temperature Measuring and Regulation Devices	146
10.3	Complete Brazing Installations	148
	Example: Shielding Gas Brazing	
	of a Suction Pipe with a Suction Bell	148
11	Further Soldering Examples from Practice	155
11.1	Electrical Machine Construction	155
11.1.1	Overlapping Joints Between Flat Copper Wires	156
	Installation Technology for Simple Overlapping Joints	156
	Installation Technology with Grip Pliers and an HHT	157
	Installation Technology with a Brazing Gun	158
11.1.2	Butt Joints Between Flat Copper Wires	161
	Installation Technology for Medium Workpiece Dimensions	161
	Installation Technology for Smaller Workpiece Dimensions	163
11.1.3	Joints Between Solid Copper Profiles	165
	Brazing in Stator Construction	166
	Repair Brazing in Stator Construction	168
	Brazing in Rotor Construction	169
	Installation Technology in Slip Ring Rotor Construction	172
11.2	Electrotechnical Components	175
	Brazing of Contact Pieces	175
	Brazing of CEE Plug-In Connectors Made of Brass	178
11.3	Mechanical and Apparatus Engineering	180
11.3.1	Brazing of Push-In Pipe Joints	180
	Diameter 25 x 1.2 mm, Stainless Steel, Example 1	180
	Diameter 28 x 1.2 mm, Stainless Steel, Example 2	183
	Aluminium Pipe, Diameter: About 10 mm, Example 3	184
	Aluminium Pipe with a Copper Pipe, Example 4	186
11.3.2	Aluminium Pipe in an Aluminium Flange	187
11.3.3	Aluminium Pipe on to the Side of an Aluminium Pipe	188
11.3.4	Aluminium Connection Nozzle on to a Muffler	189
11.3.5	Brazed Butt Joint on an Aluminium Profile	190
11.3.6	Copper Pipe in a Copper Heat Exchanger	192
11.3.7	Copper Pipe Bends into Copper Standpipes	193
11.3.8	Two Copper Pipes into a Copper Sheet Part	195
11.3.9	V2A Steel Pipe Bends into Stainless Steel Standpipes	197

11.3.10	Brazed Joint Between a Pipe and a Pipe End	199
11.3.11	Brazed Joint Between a Steel Pipe and a Fitting	202
11.3.12	Brazed Joints Between Steel Pipes and Connection Pieces	203
	Joint Between a Steel Pipe and a Ring Piece, Example 1	204
	Joint Between a Steel Pipe and a Ring Piece, Example 2	205
	Joint Between a Steel Pipe and a Ring Piece, Example 3	209
	Joint Between a Steel Pipe and a Flange, Example 4	211
	Joint Between a Steel Pipe and a Flange, Example 5	212
	Joint Between a Steel Pipe and a Flange, Example 6	213
	Two Steel Pipes on to a Sheet Part, Example 7	216
	Joint Between a Steel Pipe and an Elbow, Example 8	217
	Joint Between a Stainless Steel Pipe and a Ball Bush,	
	Example 9	219
11.3.13	Shaft into a Shut-Off Valve Disc	220
11.3.14	Heating Rod into a Brass Socket	222
	Example 1	222
	Example 2	223
	Example 3	225
11.3.15	Steel Pin into a Steel Sheet Part	226
11.3.16	Brazing of Small Parts Under Shielding Gas	226
11.3.17	Brazing of a Bush on to a Pipe Part Under Shielding Gas	229
11.3.18	Brazing of a Spring Plunger into a Spring Plate	
	Under Auto-Shielding Gas	230
11.3.19	Brazing of a Bush on to a Flange Under Shielding Gas	233
11.3.20	Brazing of a Stainless Steel Capillary Tube into a Stainless	
	Steel Base Body Under Shielding Gas	234
11.3.21	Copper Tubes and Copper Pipe into a Brass Base Body	235
11.3.22	Brass Cup on to a Copper Pipe	236
11.3.23	Two Stainless Steel Bellows on to a Stainless Steel Base	
	Body	239
11.3.24	Stainless Steel Bellows on to Two Brass Base Bodies	240
11.3.25	Brazing of a Filler Neck on to a Tank under Shielding Gas	241
11.3.26	Soft Soldering of a Thermostat Regulation Section	243
11.3.27	Soft Soldering of Individual Parts of a Thermostat System	244
	Spring Plate with Metal Bellows	244
	Connection Piece with Metal Bellows and Capillary Tubes	246
11.3.28	Soft Soldering of Sheet Vessels	247
	Soldering of a Base into a Cap	247
114	Desoldering of a Cover from a Housing	249
11.4	Toolmaking	250
11.4.1	Carbide Plates on to Circular Saw Blades	250

11.4.2	Carbide Inserts into Mining Tools	253
11.4.3	Diamond Board Segments on to a Granite Cutting Disc	254
11.5	Turbine Construction	255
11.5.1	Carbide Segments on to Leading Edges	256
11.5.2	Repair Brazing and Welding of Turbine Blades	257
11.6	Build-Up Brazing of Wear Coats	259
11.6.1	Armour Plating with Applied Powder Coats	260
11.6.2	Armour Plating of Rotor Wheels	262
11.6.3	Armour Plating of Wheel Flanges	263
11.6.4	Armour Plating of Hollow Punches	265
12	Soldering Defects - Testing of Soldered Joints	271
12.1	Soldering Defects	271
	Lack of Fusion	273
	Filling Ratio Defects	273
	Defects Due to Intercrystalline Corrosion	273
	Defects Due to Brazing Fractures	274
12.2	Checking of Soldered Joints	274
12.2.1	Testing Procedures	275
12.2.1.1	Non-Destructive Testing	275
	Dimensional and Visual Inspection	275
	Ultrasonic Testing	275
	Radiographic Testing	276
	Penetrant Testing	276
	Leak Testing	276
12.2.1.2	Destructive Testing	276
	Peel Testing	277
	Metallographic Testing	278
13	Occupational Health and Safety	270
	and Environmental Protection	219
	Induction Heating Installations	279
	Soldering Process	280
	Environmental Protection	281
14	Economic Viability of Inductive Soldering	283
15	Standardisation	285

Remarks on Illustrations	287
Additional Literature References	289
Bibliography of the Author (Articles)	290
List of Specialist Terms	295